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Abstract 

An emerging infectious disease, COVID-19, has spread from an infection cluster in Wuhan City, Hubei 

Provence, China, to create a global outbreak (pandemic) and, at the time of writing, has infected more than 

180,000 people and caused 7,000 deaths. 

Epidemiological modelling shows that non-pharmacological interventions (NPI) such as limiting movement 

of people and social distancing offer the hope of flattening the peak of load on the health care system of 

each country, and of reducing mortality. 

Planning the required acute hospital bed capacity to absorb the expected epidemic surge requires 

prediction of the magnitude and timing of the local demand on an acute hospital. 

This essay describes the science underpinning epidemiological modelling and demonstrates that a basic 

system dynamic (or stock-and-flow) model of an epidemic can be implemented using widely available 

spreadsheet software such as Excel. 

Using evidence known to date, this basic model illustrates comparable system behaviour to the more 

sophisticated simulations that are being used to guide the national response to this rapidly developing 

threat.  Specifically, that immediate, nationwide adoption of behaviours such as social distancing could 

significantly mitigate the effects. 

This first model could serve as a useful informational and educational resource at a time of great 

uncertainty, and further development is now underway to calibrate the model so it can be used to support 

tactical contingency planning. (223 words) 
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Context 
In eleven weeks, the emerging infectious disease COVID-19 has spread from an infection cluster in Wuhan 

City, Hubei Provence, China, to a global outbreak (pandemic) that, at the time of writing, has infected more 

than 180,000 people and caused 7,000 deaths. 

Public health agencies sought to contain the infection by resource-intensive tracing and isolation of 

exposed people.  Continuing transmission demonstrates that the outbreak has not been contained.  The UK 

now aims to delay the effects of the outbreak, with the goal of spreading the outbreak over a longer time, 

with a lower peak and reduced overall mortality.  In a health and social care service that was already under 

pressure, an impending sudden increase in demand for health care means that service managers, clinicians, 

provider organisations and commissioners will need to make rapid decisions about continuing elective work 

and future bed capacity, working patterns and staff resources.  Community social care services will be faced 

with outbreaks in residential facilities and domiciliary care services being affected by staff absences, which 

will affect hospital flow. 

Control of an outbreak of an infectious agent that spreads from person-to-person requires interruption of 

the chain of transmission by reducing the number of infectious people (through treatment), reducing the 

number of susceptible people (through immunisation), and/or reducing opportunities for direct and 

indirect transmission between infectious and susceptible people.  For COVID-19, there is currently no 

immunisation or specific treatment, so control requires reducing exposure.  Risk-reduction may be 

achieved by numerous means, some of which are specific to the infection’s mode of transmission: 

identification and isolation of affected people and their contacts, environmental decontamination, hygiene, 

sanitation and social distancing.  In the UK during the current epidemic, the response relied initially on 

identifying and isolating cases and contacts; and motivating personal protective behaviours through public 

health risk communication.  At the time of writing, the United Kingdom (UK) now recommends voluntary 

‘social distancing’ [Ferguson 16-03-2020]. 

The UK’s emergency response is led by the government with advice from the Scientific Advisory Group for 

Emergencies (SAGE) and other expert groups.  The modelling conducted at national level for the 

‘reasonable worst case’ scenario does not aim to guide local understanding of how individual health and 

social care services, such as hospitals, care homes and community care services, will be affected by the 

pandemic or how they should respond to the changing situation given their own specific contexts. 

The traditional and simplest epidemic model is the Susceptible-Infectious-Recovered multi-compartment 

model, represented in Fig. 1 and despite the structural simplicity, the dynamic behaviour of the SIR model is 

non-linear, complex and counter-intuitive. 

Figure 1. The SIR model for an infectious disease. 

Individuals move from S (susceptible), sequentially 

through I (infectious) to R (recovered = non-

infectious) as their illness progresses as illustrated 

by the arrows.  The number of people in each 

compartment influences these flows so the dynamic 

behaviour of the SIR system can become very 

complex despite the structural simplicity. 
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Lessons learned from previous epidemics of influenza, SARS, MERS-CoV, and Ebola, together with computer 

simulation models are widely used to assist the understanding of the behaviour of infectious diseases and 

in the pre-emptive planning for a possible future epidemic caused by a novel infectious agent.  Local 

management of an epidemic could also be greatly assisted by simulation models which facilitate planning 

of novel solutions in a rapidly evolving crisis. 

The health and social care system is an example of a complex adaptive system (CAS) and health care 

systems engineering (HCSE) is an emerging and evolving discipline that draws on the theory, techniques 

and tools of systems engineering (SE).  One such technique is system dynamics (SD) simulation modelling 

that is already used to assist the diagnosis, design and delivery of improved health care processes. 

The COVID-19 epidemic is caused by a novel coronavirus (SARS-CoV-2) for which the global population has 

an unknown level of background immunity.  Though the virus causes a mild, self-limiting respiratory 

infection in the majority, it can lead to a more severe pneumonia requiring hospital admission for 

supportive treatment.  A small proportion of patients become critically ill and require more intensive 

support including ventilation, and a significant proportion of severely or critically ill patients do not survive. 

Our immune system protects us from pathogens so even when exposed we may avoid becoming infected.  

But when exposed to a novel infective agent it takes time for our immune system to mount a defence, 

during which time the pathogen can multiply and spread.  This may cause symptoms such as a high 

temperature (pyrexia), and the interval between becoming infected and exhibiting symptoms is called the 

incubation period (Fig. 2).  While we are infected, we may also become infectious (i.e. can transmit the 

pathogen to others) and the interval between being infected and becoming infectious is called the latent 

period.  If the latent period is shorter than the incubation period, then an infectious agent can be 

unwittingly transmitted before the individual is aware that they are infected or infectious.  The emerging 

evidence is that this novel coronavirus has a latent period that is shorter than the incubation period so can 

be transmitted unintentionally. 

Figure 2. Relationships between the events, states, compartments and named intervals. 

 

The ability of an infectious agent to spread in a population is also influenced by the number of individuals 

who have immunity to the pathogen.  This population immunity is initially low and increases either as a 

result of individuals being exposed to the agent, or by prophylactic strategies such as immunisation 

programmes. 
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So, the novelty and nature of the COVID-19 virus implies that the combination of factors may create a 

‘perfect storm’ with a potentially rapid growth in the number of severely ill patients that then threatens to 

overwhelm the health care system causing further collateral problems as patients with other severe 

illnesses cannot then access services. 

Health care systems globally are working to understand the challenge and to prepare for it, and there is an 

urgent need for predictive tools to assist capacity planning.  Specific requirements include planning the 

number of hospital beds, equipment, staff and consumables required to manage the expected peak of 

demand; and re-designing the health care processes to make best use of the resources available.  Each 

acute hospital will need to adapt the strategic guidance provided by their government to their local needs 

and resources, but service managers are usually not trained in the skills required to rapidly design, build, 

verify and deploy predictive modelling tools.  They are, however, generally very familiar with using 

spreadsheet software such as Microsoft Excel. 

Purpose 
The purpose of this essay is to inform and educate by visualising the complex dynamics of epidemics using 

an Excel-based SIR simulator built using systems engineering principles combined with rapid application 

development (RAD).  This is the first component of an adaptable acute hospital capacity planning tool. 

Method 
A structurally simple, time-dependent, population model for human-to-human infectious disease 

transmission where recovery confers long-term immunity consists of three compartments: S for the 

number of susceptible people, I for the number of infectious people, and R for the number recovered (i.e. 

not infectious) people - hence the name SIR (Fig. 1).  In a rapidly spreading epidemic the total population 

(N) is assumed not to change so at any time t after the introduction of the infectious agent: 

    N = St + It + Rt        Eq. 1 

where St is the size of the susceptible population at time t, It is the number of infectious individuals and Rt is 

the number of patients who have recovered to the point they are no longer infectious or who did not 

survive so have been removed from the system. 

The flow from Susceptible to Infectious at time t is given by β * It where β is the average number of 
contacts per person times the probability of disease transmission in a contact between a susceptible and an 
infectious subject.  The flow from Infectious to Recovered at time t is given by γ * It and represents 
infectious patients becoming non-infectious by being isolated, becoming immune or not surviving.  If the 
duration of the infectious period is D, then γ=1/D or by re-arranging D = 1/γ. 
 
In epidemiology, the basic reproduction number (R0) or “R nought” of an infectious disease is the average 
number of new cases directly generated by one infectious individual in a population where all individuals 
are susceptible to infection and is given by β/γ.  If R0 is greater than 1.0 the infectious compartment will 
initially grow exponentially, and this is the necessary condition for an epidemic to develop.  The larger R0, 
the steeper the exponential growth, and the larger the proportion of the susceptible population that 
become ill.  R0 is not to be confused with the effective reproduction number (eR) which is the number of 
cases generated in the current state of a population.  Emerging evidence shows that R0 for COVID-19 lies in 
the range 1.4 to 3.9. 
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Figure 3.  The set of three differential equations that describe the SIR model 
[Wikipedia 19-03-2020].  This set of time-dependent equations can be solved 
numerically for any set of inputs (N, β, γ) and initial values for S, I and R.  For 
an epidemic to start I needs to be greater than zero, and then the size of I will 
increase exponentially provided there is a large enough proportion of 
susceptible individuals in the population (S/N) and β>γ (i.e. R0>1.0).  
Eventually, the size of the susceptible compartment S falls sufficiently that the 
rate of recovery (γ*I) starts to exceed the rate of infection (β*I*S/N), and that 
is when the epidemic peaks.  From then on, the size of the infectious 
compartment I falls progressively to zero at which point the epidemic ends. 
 
Exponential growth is difficult to comprehend intuitively, so visualising the time-dependent behaviour of 
the SIR multi-compartment model is a necessary aid to understanding.  A convenient way to do this is to 
use spreadsheet programme such as Microsoft Excel. 
 

Figure 4. Visualisation of the 
time course of an epidemic of 
a novel infectious agent 
introduced at t=0 into a 
susceptible population S of 50 
million people where R0=1.75. 
 
The blue line is the size of the 
susceptible population (Sus), 
the red line is the number of 
infectious individuals (Inf), 
and the green line is the 
number of patients who are 
no longer infectious (Rec). 

 
Note the time lag of more than 100 days before the number of infectious cases (Inf) starts to be visible, the 
accelerating growth of the infectious population, and the high proportion of people that become non-
infectious (Rec).  The epidemic is self-limiting because eventually the size of the susceptible population 
(Sus) falls.  Note that when the epidemic ends there is still a proportion of the population who are 
susceptible, in this case about 30%. 
 
One strategy to prevent epidemics is to immunise some of the population so that the ratio S/N falls.  The 
condition for this to prevent an epidemic is β*I*S/N = γ*I and if the proportion of immunised individuals is 
p then S = N(1-p) and we get β*(1-p)=γ which, substituting with R0=β/γ can be simplified to: 
 
    p = 1 – 1/R0        Eq. 2 
  
So, for the epidemic illustrated in Fig. 1 where R0=1.75, the value of p is 1-1/1.75 = 0.43 which implies that 
only 43% of the population needs to be immunised to prevent an epidemic developing.  This is called the 
herd immunity threshold (HIT) and is much lower than the 70% of the population who became ill and then 
immune when the epidemic ran its natural course. 
 
The value of R0 is not solely a characteristic of a specific infectious agent, as it is also influenced by the 
context and environment because the rate of infection is influenced by interventions that reduce the 
opportunity of cross-infection such as hand washing, wearing personal protective equipment (PPE), or 
separating infectious and susceptible groups (e.g. quarantine, restriction of movement, social distancing).  
For some infections it is also affected by other contextual factors such as sanitation and humidity.  So, given 
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that we can intervene to reduce R0 to contain, delay and mitigate the spread of an infectious agent in a 
susceptible population, it is important to understand the relationship between R0 and the size and timing of 
the peak of illness.  We can use the theoretical SIR model to explore this relationship (Fig. 5). 
 

 
Figure 5. 
Relationship 
between the 
value of R0 and 
the number of 
infectious 
patients at the 
peak of the 
epidemic (blue), 
the time to peak 
(brown) for a 
susceptible 
population of 50 
million. 
 
 

 
Note as R0 increases both the peak and speed of onset of the epidemic increase.  So, a rational strategy to 
lower and delay the peak is to reduce R0 (i.e. β/γ) and that implies reducing β and increasing γ.  
Comprehensive contact tracing and isolation is one way to increase γ by removing those individuals from 
the infectious pool more quickly.  Personal infection protection behaviours, such as respiratory hygiene, 
hand-washing and social distancing, are examples of ways to reduce β. 
 
Experience of the COVID-19 epidemic in other countries indicates that some individuals require hospital 
treatment, especially those with pre-existing conditions and poor physiological reserve.  As health care 
resources are limited and usually already over-stretched, the additional shock of a large epidemic could tip 
the whole healthcare system into collapse.  So local health care systems will need to be able to act quickly, 
decisively and effectively and that implies being able to make a reliable prediction of the effect of an action. 
 
Predictive modelling can capture the evolving context and emerging system behaviour and one technique is 
a system dynamics (SD) or stock-and-flow (S&F) model that can often be implemented using spreadsheet 
software.  The generic sequence used in systems engineering is: 
  
 1-Specify  2-Design  3-Build  4-Verify  5-Implement  6-Validate 
 

1. Design Specification 
An easy-to-use, Excel-based, interactive simulation tool that can be used to educate health care staff about 
the counter-intuitive behaviour of epidemics and to assist with estimating the dynamically changing 
number of acute and critical care hospital beds needed to manage an evolving COVID-19 epidemic. 
 
The design of a stock-and-flow model requires two steps: 
  
 2.1 Causal Loop Diagram 
 2.2 Stock-and-Flow Diagram   
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2.1 Causal Loop Diagram 
A causal loop diagram (CLD) or map is used to illustrate the relationships between the variables in this 

simplified system and to explain the typical evolution over time of an infectious disease epidemic (Fig. 6).  

Figure 6. Causal loop diagram of a typical infective disease. The circles and boxes represent system 

variables, and the arrows are causal links.  A red arrow with a positive sign indicates that the input (cause) 

moves the output (effect) in the same direction; a green arrow with a negative sign indicates the input 

moves the output in the opposite direction.  A causal loop is any closed path created by following the 

arrows.  A causal loop with an odd number of negative arrows is called a balancing or stabilising loop (B-), 

otherwise it is a reinforcing or destabilising loop (R+).   

 
The causal loop diagram for a self-limiting, infectious disease is based on the sequential process of 

susceptible-exposed-infectious-recovered (SEIR) (Fig. 2).  There is a reinforcing loop (R+) between the 

Exposed and Infectious compartments because infectious patients are the source of new exposures and 

this causes the epidemic to grow and spread.  There is a lag from exposure to becoming infectious that is 

caused by the delay while the virus replicates and spreads in the infected individual (latent period, lag#1); 

and a second lag before infectiousness drops as the individual’s immune response eliminates the virus 

(infectious period, lag#2).  Infectious patients are assumed to be no longer susceptible which reduces the 

susceptible population so forms a balancing loop (B-) which will eventually terminate the epidemic.  The 

probability of a susceptible person becoming infectious is determined by the number of person-to-person 

contacts per day, the transmissibility of the pathogen, and the proportion of infectious people in the 

population (Figs 2,3).  If R0 is less than 1.0 then the disease will not spread; if the R0 is more than 1.0 then 

the number of infected people will increase exponentially (epidemic potential).  Eventually, a patient will 

become non-infectious and move to the final compartment called Recovered.  In the case of an epidemic, 

the pool of susceptible people decreases over time so the opportunity for an infectious person to infect 

someone else will also fall. This illustrates the dynamic nature of the effective reproduction number (eR), 

and when it goes below 1.0 the epidemic peaks and will then wane as the infectious pool empties. 

To make specific predictions of the plausible behaviour in a real system, the causal loop diagram is used to 

develop a system dynamic or stock-and-flow map that is the blueprint for building a practical simulation 

tool. 
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2.2 Stock-and-Flow Diagram 
A stock-and-flow diagram or map shows the structure of a system using specific symbols that distinguish 

between quantities that are stocks and those that are flows; which differ in their units of measurement.  A 

stock is measured at a specific time and represents a quantity existing at that point in time (the S, I and R 

compartments (Figs 1, 2) are stocks.  A flow links two stocks. 

Figure 7. Stock-and-flow map of the health care macrosystem used as a blueprint for building an Excel-

based simulation model.  Stocks are shown as rectangles, flows as black solid arrows with flow control 

“valves”.  Note that a flow is one way with the direction shown by the arrow.  The control signals are shown 

as dotted lines with arrows indicating the direction of information flow and the internal flow control logic is 

indicated by blue-shaded boxes. The prefixed names refer to system variables in the Excel model: w- implies 

a stock, q- implies a flow, p- implies a probability, n- implies a count, and t- implies a time interval (see Table 

1 in the Glossary for descriptions). 

 
 

3. Build 

It is relatively straightforward to build this system dynamics model in Excel because there is a one-way flow 

from the starting Susceptible stock (the source) to the final Recovered and Died stocks (the sinks), and 

because there are no flow loops.  Fig. 7 illustrates the alternating sequence of stock-flow-stock and this can 

be used to structure the Excel model to make it easier to build and verify.  Each row in the sheet represents 

the flow in a time interval (dt) and the columns represent the alternating stocks and flows.  Stocks are 

coloured blue and have a w- prefix and flows are coloured orange and have a q- prefix and a name that 

indicates which stocks the flow links to.      

Figure 8. Screen shot of part of an Excel implementation.  Time runs from top to bottom and the flow from 

left to right. The cells in red on the second row indicate the initial values of the stocks. The logic of the model 

is implemented using formulae in the cells (not shown).  There is also an input control area and an output 

display area.  Once the model is verified to be working correctly it is usual to password protect all but the 

input cells to avoid accidental changes that would invalidate the outputs. See Glossary for definitions.         
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4. Verify 
The verification step of the systems engineering process is essential to ensure that unintended errors have 

not been introducing during the build stage.  A series of verification tests are specified as part of the design 

phase and each represents a scenario with a defined set of inputs and an expected output.  The actual 

output of the model is compared with the expected output and any differences trigger an investigation and 

correction of the cause.  Only when all the verification tests have been passed can the model outputs be 

trusted.  For a model with many inputs there are potentially a very large number of possible combinations, 

and the design of a comprehensive set of verification tests can be the most difficult part of the process. 

Figure 9. Screen shot of part of the verification test table. The required input values are defined for each 

scenario and typically only one input is changed at a time to facilitate investigation of the cause of a 

verification test failure. See Table 1 in the Glossary for definitions of system variables. 

 

As well as verifying the internal structure of the model, it is important to test the new model using an 

alternative modelling method and some validated test cases.  For example, the expected output of specific 

scenarios can be predicted using analytical methods such as a proven mathematical equation.   

In this context, we can use the equation for the herd immunity threshold (Eq. 2) to verify that if the 

proportion of the starting population that is already immune is below this threshold, then the SIR model 

predicts that an epidemic does happen; and when it is above this threshold the model predicts an epidemic 

does not happen. 

Figure 10. Verification test for Ro = 1.75 (HIT = 1-1/1.75 = 0.43) and pImmune=0.3 so the susceptible 

population is 50,000,000 * (1-0.3) = 35,000,000.  The chart shows the Excel model predicts an epidemic 

which is the expected output. So, this verification test is passed.   
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Figure 11. Verification test for Ro = 1.75 (HIT = 1-1/1.75 = 0.43) and pImmune=0.5 where the Excel model 

predicts no epidemic which is the expected output; so this verification test is also passed.  Note that a low 

level of illness develops which remains stable over time and is called endemic disease. 

 

 

 

 

 

 

 

 

 

5. Implement 
The first stage of implementation is to calibrate the generic model so that it matches a local context using 

historical data from that context.  This essential calibration step allows the model inputs to be tuned to the 

specific system so that future predictions from the calibrated model are valid for that system.  In this 

context the proportion of the population that has baseline immunity (pImmune) and R0 for the remaining 

susceptible compartment need to be estimated using historical data.  

Note: This model has not yet been calibrated so the demonstrations below are illustrative but realistic.    

With a verified and calibrated model, we can define a series of experiments to answer specific questions 

that the model has been designed to answer by showing the predicted severity and time course of an 

epidemic.  The two primary questions are: 

Q1: Can an epidemic be supressed or flattened-and-delayed by the population adopting a social-

distancing behaviour? 

This question can be answered by running the model over a range values of the inputs that drive R0 and 

observing the predicted system behaviour.  Fig. 7 shows the stocks, flows and signals related to this 

question which link back to an area for the model inputs (Fig 12). 

Figure 12.  Screenshot of the relevant section of the input 

area.  nContacts refers to the average number of 

opportunities for an individual to be exposed to COVID-19 

virus in a day and pConversion refers to the probability that 

one exposure results in an infection in a susceptible 

individual.  tSus2Inf represents the latent period (lag#1) in days and tInf2Rec represents the infectious 

period (lag#2) in days (Figs 2, 6).  pInf2Rec=100% means that all infected individuals will become recovered, 
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(non-infectious) so there are no persistently infectious carriers.  R0 is calculated using the formula 

nContacts*pConversion*tInf2Rec and represents the number of people that one infectious person infects. 

The actual values of nContacts and pConversion are not known, but R0 and the infectious period for COVID-

19 have been roughly estimated as 1.75 and 7 days respectively from the initial epidemiological studies in 

China.  It is important to note that R0 is context specific and may be much larger in a different context. 

So, as a starting point, the estimated value for pSusToInf is 1.75/7 = 0.25 and the impact of social distancing 

can be simulated by reducing nContacts progressively and observing the effect on R0 and the SIR model 

behaviour.  In this case the latent period has been set to 2 days so this is now called a SEIR model.  

Q2: How many staffed emergency and critical care beds would an average acute hospital need to make 

available just for patients with COVID-19 pneumonia? 

Figure 13. Screenshot 

of the whole input 

area for the model. 

To predict the peak 

demand for acute 

care and critical care 

beds we also need to 

know the flow 

conversion rates and 

the touch times for 

the Hospital section 

of the stock-and-flow 

model (Fig. 7).  The 

values shown here 

are based on the 

range of 

approximate values 

from the data shared 

by countries with 

more experience to 

date. 

The inputs in blue are determined by the nature of the illness, and the specific clinical pathways and policies. 

The predicted bed load is driven by the time pattern of infections, which is in turn driven by the inputs shown 

in Fig. 12. 

pRec2Sev = proportion of infected patient becoming severely ill and requiring admission. 

pSev2Crit = proportion of severely ill who become critically ill and require ventilation. 

pCrit2Death = proportion of critically ill patients who do not survive. 

pDeath = proportion of infected cases that die = pRec2Sev * pSev2Crit * pCrit2Death. 

tDouble = the initial doubling time of the infectious population. 

R0 is the basic reproduction number which determines epidemic potential (R0>1.0).  
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Figure 14. The predicted course of the epidemic for a “do nothing” or “worst case” scenario for a susceptible 

population of 50,000,000 using the inputs shown in Fig. 13 and assuming there is no collateral mortality 

caused by other patients unable to access health care services.  It predicts that, at the peak load in early 

July, the system would need over 700,000 acute care beds and over 180,000 critical care beds.  

 

Given that we currently have no specific treatment and no vaccine for COVID-19, our only effective control 

lever is to reduce spread using social distancing.  This implies that both questions above can be answered 

with one controlled experiment where the value of nContacts is reduced at a point in time after the start of 

the simulation period and the effect of the intervention observed. 

Theory predicts that if R0 can be reduced to less than 1.0 a growing epidemic can be suppressed, and this 
has been observed in the first countries to be affected by COVID-19 such as China, Taiwan, and South Korea 
who implemented “lock-down” strategies early.  On 16th March 2020, the last of the temporary hospitals 
built in Wuhan was closed which is evidence that the COVID-19 epidemic can be supressed, and many 
deaths avoided.  On the same date the UK government recommended an increase in the level of social 
distancing and has escalated the degree progressively since. 
 
An expected consequence of supressing and epidemic is that little additional population immunity may be 
generated, and the remaining susceptible population remains at risk of the spontaneous development of 
further epidemics.  That prediction assumes (a) there is low baseline population immunity and (b) recovery 
implies a high level of individual immunity.  Currently we do not have hard evidence to validate either 
assumption. 
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Outcomes 
Figure 15. Predicted effect of reducing nContacts from 25 to 22 on 19/03/2020 (equivalent to reducing R0 

from 1.75 to 1.54) and sustaining the reduction.  Compared with Fig. 14 the peak demand is delayed by 

several weeks and reduced to 460,000 acute beds and 115,000 critical care beds. 

 

The change from Fig. 14 to Fig. 15 suggests that social distancing, if adopted universally, can have a 

significant life-saving effect by making it harder for the virus to spread and also generate more than enough 

population immunity to remove the risk of a future epidemic (HIT = 21,500,000 for R0 of 1.75 in this 

example).  This suggests that with a greater degree of social distancing maintained for longer, the necessary 

herd immunity threshold could still be achieved, and the mortality reduced still further. 

Figure 16. Predicted effect of reducing nContacts from 25 to 19 on 19/03/2020 (equivalent to reducing R0 

from 1.75 to 1.33) and sustaining the reduction.  Compared with Fig. 14 the peak demand is further delayed 

and reduced to 210,000 acute care beds and 53,000 critical care beds. 
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Figure 17. Predicted effect of reducing nContacts from 25 to 16 on 19/03/2020 (equivalent to reducing R0 

from 1.75 to 1.12) and sustaining the reduction.  Compared with Fig. 14 the peak demand is reduced to 

36,000 acute beds and 9,000 critical care beds. 

 

 

 

 

 

 

 

 

 

Given that we currently have no other options, reducing the spread of COVID-19 through social distancing 

is an effective intervention to mitigate this disease and avoid bigger humanitarian catastrophe. 

Figure 18. Predicted effect of reducing nContacts from 25 to 14 on 19/03/2020 (equivalent to reducing R0 

from 1.75 to 0.98) and sustaining the reduction.  Compared with Figs 14-17, the exponential growth is 

supressed and the delay in reducing the peak demand is only because there are already infected patients in 

the system. 

 

 

 

 

 

 

 

 

 
Fig. 18 confirms that with enough collective population behaviour change to limit ongoing spread of the 

COVID-19 virus in the community, a developing epidemic can be supressed, the acute hospitals will not be 

massively overwhelmed, and the mortality rate will be dramatically reduced.  However, the herd immunity 

threshold (HIT) is not achieved so ongoing social distancing, community testing, self-reporting, self-
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isolation, contact tracing and quarantine would need to be continued until the development of an effective 

vaccine. 

6. Validate  
The validation test of a predictive model is for the measured effect of an intervention to match the 

predicted effect.  If the validation test is passed it implies that the model is fit for purpose (i.e. designed and 

built correctly).  This model has not yet reached the validation stage, so the next step is to calibrate it using 

historical data and as interventions, such as nationwide social distancing, are implemented the model will 

be updated and re-calibrated using new data. 

Reflections 
It is reassuring that a realistic model of an epidemic that affects millions of people can be built using some 

basic information, tried-and-tested systems engineering techniques, and an Excel spreadsheet.  It is hoped 

that sharing this insight will help inform the debate on how to effectively manage the rapidly evolving 

COVID-19 pandemic and reduce the human and societal cost. 

There are still many unknowns such as the baseline proportion of the community who are susceptible, the 

context-sensitive value of R0 and whether infection confers long-standing immunity.  As the real story 

unfolds there will be more data to use to fine tune the model and to guide future planning.  For example, it 

may be that the level of background immunity is much higher than zero and that the COVID-19 agent has a 

higher R0.  So, despite the global threat there is good reason to maintain hope that if social distancing is 

adopted and coordinated on a national scale, it can provide the necessary leverage to mitigate the risk. 

The complex and counter-intuitive behaviour of a complex adaptive system and its sensitivity to the inputs 

implies that, to be able to sustain predictive power, the model needs to co-evolve alongside the system and 

be updated as new data comes in.  This implies that the necessary knowledge and skills to use and update 

such models is embedded within the health care service itself.  In Part 2 we will describe the model 

calibration phase and demonstrate a more detailed model for assisting local decision-making about the 

predicted demand for specific acute hospital resources. 

Lessons 
 

1. The COVID-19 epidemic can be modelled using a structurally simple system dynamics model. 

2. This system dynamics model can be easily implemented using widely available spreadsheet software. 

3. The illustrative model predictions match the growing body of evidence that social distancing may be an 

effective way to effectively manage the COVID-19 epidemic and to minimise harm. 

4. As the real story unfolds the model can be fine-tuned to provide more accurate insight and guidance. 

5. The importance of building capability for such modelling should be a priority for all NHS organisations.   
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Glossary of Terms 
 
Asymptomatic – a disease stage where the individual does not exhibit symptoms. 
 
Basic reproduction number (R0) - the expected number of new cases directly generated by one case in a 
population where all individuals are susceptible to infection. 
 
CAS (Complex Adaptive System) - a system in which a perfect understanding of the individual parts does 
not automatically convey a perfect understanding of the whole system's behaviour. 
 
CLD (Causal Loop Diagram) – a visual representation that aids understand of how system variables are 
interrelated. 
 
Critical illness – an illness that requires specialist physiological support such as ventilation. 
 
Disease – the failure of a physiological system. 
 
Effective reproduction number (eR) - the expected number of new cases directly generated by one case in 
a population where not all individuals are susceptible to infection. 
 
Epidemic - a widespread occurrence of an infectious disease in a community at a specific time point. 
 
Exposed – when an individual has encountered a disease-causing agent which is necessary for infection. 
 
Incidence – the number of new cases of a disease in an interval of time. 
 
Incubation period – the interval between infection and the onset of symptoms. 
 
Infection – the invasion and multiplication of microorganisms such as bacteria, viruses, and parasites that 
are not normally present within the body. 
 
Infectious – the state when and individual is infected and can transmit the pathogen to other individuals. 
 
Immunity – an individual’s resistance to infection or re-infection by a pathogen. 
 
Latent period – the interval between the onset of infection and becoming infectious. 
 
Pandemic – an epidemic spreading over multiple countries. 
 
Pathogen – a disease-causing infective agent such as a virus. 
 
Pneumonia – inflammation of the lungs caused by bacteria or virus where the air sacs are filled with pus. 
 
Prevalence – the number of cases of a disease at a specific time point. 
 
Prevention – lack of disease occurrence despite exposure to a pathogen. 
 
Prophylaxis – a strategy to prevent a disease such as an immunization programme. 
 
Recovered – the transition from an infectious state to a non-infectious state. 
 
S&F (Stock-and-Flow) – a form of computer simulation of system behaviour. 

http://www.journalofimprovementscience.net/


© Dodds SR, Bradley DT. An acute hospital demand surge planning model for the COVID-19 epidemic using 
stock-and-flow simulation in Excel: Part 1. Journal of Improvement Science 2020; 68: 1-20. 
 
 

 
17 | Page  http://www.journalofimprovementscience.net Version [1.01] 

 
SD (System Dynamics) – an approach to understanding the nonlinear behaviour of complex systems over 
time using stocks, flows, internal feedback loops, table functions and time delays. 
 
SEIR (Susceptible-Exposed-Infectious-Recovered) – a multi-compartment model of infectious disease 
where the latent period is greater than zero. 
 
Sepsis – a serious condition resulting from the presence of harmful microorganisms in the blood or other 
tissues and the body’s response to their presence, potentially leading to the malfunctioning of various 
organs, shock, and death. 
 
Serial interval - the time interval between the onset of symptoms in a primary case and the onset of 
symptoms in a secondary case infected by the primary case. 
 
Severe illness – an illness that requires hospital admission for diagnosis and treatment. 
 
SIR (Susceptible-Infectious-Recovered) – a multi-compartment model of infectious disease where the 
latent period is zero. 
 
SIRS (Systemic Inflammatory Response Syndrome) – an inflammatory state affecting the whole body. 
 
Susceptible – the state of insufficient resistance to infection or re-infection by a pathogen. 
 
Symptomatic – a disease state where the individual does exhibit symptoms such as cough, pyrexia, etc. 
 
Transmission – the passing of a pathogen from an infected host individual to another individual.  
 
Virus – a small infective agent that can only multiply within the living cells of a host. 
 
 
Table 1. Description of the system variables used in the Excel implementation. 
 

 
 

Note: that epidemiologists use “recovered” to mean “not-infectious” while in normal parlance we interpret 

it as “not ill” i.e. asymptomatic.  Also, the assumption used in the model is that when a sick COVID-19 

patient is admitted to hospital they become non-infectious to others in the Susceptible compartment 

because health care staff use infection control/isolation/personal protection to prevent spread.  The 

patient is clearly not “recovered” in the clinical sense because they are far from asymptomatic! 

wSus Susceptible compartment stock

qSus2Inf Susceptible to Infectious flow

wInf Infectious compartment stock

qInf2Rec Infectious to Recovered (non-infectious) flow

wRec Recovered (non-infectious) stock

qSev Flow of severe cases (admission demand)

wSev Severe cases stock (non-ventilated)

qSev2Disch Flow of severe to discharge (part of discharges)

qSev2Crit Flow ofsevere to critical

wCrit Critical case stock (ventilated)

qCrit2Disch Flow of critical to discharge (part of discharges)

qDied Flow of deaths

wDied Stock of deaths (total mortality)
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isolation is likely to be limited, requiring multiple interventions to be combined to have a substantial impact on 

transmission. Two fundamental strategies are possible: (a) mitigation, which focuses on slowing but not necessarily 
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and social distancing of the elderly and others at most risk of severe disease) might reduce peak healthcare demand by 
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temporarily in relative short time windows, but measures will need to be reintroduced if or when case numbers rebound. 
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